لأن$1$ - Übersetzung nach Englisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

لأن$1$ - Übersetzung nach Englisch

DIVERGENT SERIES
1+1+1+···; 1 + 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + …; 1 + 1 + 1 + 1 + ...; Zeta(0)
  • alt=A graph showing a line that dips just below the ''y''-axis

لأن      
bedew
alpha 1 antitrypsin         
  • Alpha-1 antitrypsin (white) with highlighted 'reactive centre loop' (blue) and A-sheet (light blue). (PDB: 1QLP)
MAMMALIAN PROTEIN FOUND IN HOMO SAPIENS
Alpha-antitrypsin gene; Alpha-1-Antitrypsin; A1AT; Antitrypsin; Alfa1 antitrypsin; Serum trypsin inhibitor; SERPINA1; A1at; 1antitrypsin; Alpha1-antiproteinase; Α1-antitrypsin; ATC code B02AB02; ATCvet code QB02AB02; Alpha-1-proteinase inhibitor; Aralast; Prolastin; Alpha 1 antitrypsin; 1-antitrypsin; SERPINA1 (gene); Alpha 1-antitrypsin; Zemaira; Α1-Antitrypsin; C2001H3130N514O601S10; A1-Proteinase Inhibitor (Human); Α1AT; Respreeza; Prolastin-C; Aralast NP; Glassia; Alpha-1 protease inhibitor
‎ ألفا 1-أنتي تريبسين‎
alpha 1-antitrypsin         
  • Alpha-1 antitrypsin (white) with highlighted 'reactive centre loop' (blue) and A-sheet (light blue). (PDB: 1QLP)
MAMMALIAN PROTEIN FOUND IN HOMO SAPIENS
Alpha-antitrypsin gene; Alpha-1-Antitrypsin; A1AT; Antitrypsin; Alfa1 antitrypsin; Serum trypsin inhibitor; SERPINA1; A1at; 1antitrypsin; Alpha1-antiproteinase; Α1-antitrypsin; ATC code B02AB02; ATCvet code QB02AB02; Alpha-1-proteinase inhibitor; Aralast; Prolastin; Alpha 1 antitrypsin; 1-antitrypsin; SERPINA1 (gene); Alpha 1-antitrypsin; Zemaira; Α1-Antitrypsin; C2001H3130N514O601S10; A1-Proteinase Inhibitor (Human); Α1AT; Respreeza; Prolastin-C; Aralast NP; Glassia; Alpha-1 protease inhibitor
ألفا 1-أنتي تريبسين

Definition

one
the upper limit of intoxication or exhaustion
after the second pint of gin, i was hard one-ing

Wikipedia

1 + 1 + 1 + 1 + ⋯

In mathematics, 1 + 1 + 1 + 1 + ⋯, also written n = 1 n 0 {\displaystyle \sum _{n=1}^{\infty }n^{0}} , n = 1 1 n {\displaystyle \sum _{n=1}^{\infty }1^{n}} , or simply n = 1 1 {\displaystyle \sum _{n=1}^{\infty }1} , is a divergent series, meaning that its sequence of partial sums does not converge to a limit in the real numbers. The sequence 1n can be thought of as a geometric series with the common ratio 1. Unlike other geometric series with rational ratio (except −1), it converges in neither the real numbers nor in the p-adic numbers for some p. In the context of the extended real number line

n = 1 1 = + , {\displaystyle \sum _{n=1}^{\infty }1=+\infty \,,}

since its sequence of partial sums increases monotonically without bound.

Where the sum of n0 occurs in physical applications, it may sometimes be interpreted by zeta function regularization, as the value at s = 0 of the Riemann zeta function:

ζ ( s ) = n = 1 1 n s = 1 1 2 1 s n = 1 ( 1 ) n + 1 n s . {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1-2^{1-s}}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{s}}}\,.}

The two formulas given above are not valid at zero however, but the analytic continuation is.

ζ ( s ) = 2 s π s 1   sin ( π s 2 )   Γ ( 1 s )   ζ ( 1 s ) , {\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\ \sin \left({\frac {\pi s}{2}}\right)\ \Gamma (1-s)\ \zeta (1-s)\!,}

Using this one gets (given that Γ(1) = 1),

ζ ( 0 ) = 1 π lim s 0   sin ( π s 2 )   ζ ( 1 s ) = 1 π lim s 0   ( π s 2 π 3 s 3 48 + . . . )   ( 1 s + . . . ) = 1 2 {\displaystyle \zeta (0)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \sin \left({\frac {\pi s}{2}}\right)\ \zeta (1-s)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \left({\frac {\pi s}{2}}-{\frac {\pi ^{3}s^{3}}{48}}+...\right)\ \left(-{\frac {1}{s}}+...\right)=-{\frac {1}{2}}}

where the power series expansion for ζ(s) about s = 1 follows because ζ(s) has a simple pole of residue one there. In this sense 1 + 1 + 1 + 1 + ⋯ = ζ(0) = −1/2.

Emilio Elizalde presents a comment from others about the series:

In a short period of less than a year, two distinguished physicists, A. Slavnov and F. Yndurain, gave seminars in Barcelona, about different subjects. It was remarkable that, in both presentations, at some point the speaker addressed the audience with these words: 'As everybody knows, 1 + 1 + 1 + ⋯ = −1/2.' Implying maybe: If you do not know this, it is no use to continue listening.